
Discrete Mathematics: Combinatorics and Graph Theory

Homework 2 Solution

Instructions. Solve any 10 questions. Typeset or write neatly and show your work to receive full credit.

1. List the ordered pairs in the relation R from A = {0, 1, 2, 3, 4} to B = {0, 1, 2, 3}, where (a, b) ∈ R if
and only if:

(a) a = b
{(0, 0) , (1, 1) , (2, 2) , (3, 3)}

(b) a+ b = 4
{(1, 3) , (2, 2) , (3, 1) , (4, 0)}

(c) a > b
{(1, 0) , (2, 0) , (2, 1) , (3, 0) , (3, 1) , (3, 2) , (4, 0) , (4, 1) , (4, 2) , (4, 3)}

(d) a|b
{(1, 0), (1, 1) , (1, 2) , (1, 3) , (2, 0) (2, 2) , (3, 0) , (3, 3)}

(e) gcd(a, b) = 1
{(0, 1) , (1, 0) , (1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2) , (4, 1) , (4, 3)}

(f) lcm(a, b) = 2
{(1, 2) , (2, 1) , (2, 2)}

2. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric,
whether it is antisymmetric, and whether it is transitive.

(a) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
Not reflexive , not symmetric , not antisymmetric, transitive.

(b) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}
Reflexive, symmetric, not antisymmetric, transitive.

(c) {(2, 4), (4, 2)}
Not reflexive, symmetric, not antisymmetric, not transitive.

(d) {(1, 2), (2, 3), (3, 4)}
Not reflexive, not symmetric, antisymmetric, not transitive.

(e) {(1, 1), (2, 2), (3, 3), (4, 4)}
Reflexice, symmetric, antisymmetric, transitive.

(f) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}
Not reflexive, not symmetric, not antisymmetric, not transitive.
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3. Determine whether the three relations shown below in the three directed graphs is an equivalence
relation.

Figure 1: Three relations R1 (left) R2 (center) and R3 (right) represented as digraphs.

Left is reflexive (there is a loop at each vertex), symmetric (every edge is accompanied by an edge
pointing in the opposite direction) but not transitive (since edges (c, d) and (d, c) are missing). Center
is an equivalence relation, right is reflexive and symmetric but not transitive.
Write the elements of each relation as a set and a binary matrix. If each is not an equivalence relation,
specify and draw the reflexive R+

r , symmetric R+
s and transitive R+

t closure.

4. Establish the congruence classes for the following:

(a) What is the congruence class [4]m when i) m = 2? ii) m = 3? iii) m = 6? iv) m = 8?

i. [4]2 = {i|i ≡ 4 (mod 2) = {· · · ,−2, 0, 2, 4 · · · }
ii. [4]3 = {i|i ≡ 4 (mod 3) = {· · · ,−5,−2, 1, 4, 7, · · · }
iii. [4]6 = {i|i ≡ 4 (mod 6) = {· · · ,−14,−8,−2, 4, 10, · · · }
iv. [4]8 = {i|i ≡ 4 (mod 8) = {· · · ,−20,−12,−4, 4, 12, · · · }

(b) What is the congruence class [n]5 (that is, the equivalence class of n with respect to congruence
modulo 5) when i) n = 2? ii) n = 3? iii) n = 6? iv) n = −3?

i. [2]5 = {i|i ≡ 2 (mod 5) = {· · · ,−8,−3, 2, 7, 12, · · · }
ii. [3]5 = {i|i ≡ 3 (mod 5) = {· · · ,−7,−2, 3, 8, 13, · · · }
iii. [6]5 = {i|i ≡ 6 (mod 5) = {· · · ,−9,−4, 1, 6, 11, · · · }
iv. [−3]5 = {i|i ≡ −3 (mod 5) = {· · · ,−8,−3, 2, 7, 12, · · · }

5. Find all solutions to the following linear congruences:

(a) 5x ≡ 12 (mod 23)
Note that gcd(5, 23) = 1 so there is one solution mod 23. Using EEA:

23 = 4× 5 + 3 ⇒ 3 = 23− 4× 5

5 = 1× 3 + 2 ⇒ 2 = 5− 1× 3 ⇒ 2 = 5− (23− 4× 5)× 1 = (5)5 + (−1)23

3 = 1× 2 + 1 ⇒ 1 = 3− 1× 2 ⇒ 1 = (23− 4× 5)− 1× (5× 5− 1× 23)

⇒ 1 = −9× 5 + 2× 23

Therefore −9 is the inverse to 5x ≡ 12 (mod 23) ⇒ (−9)5x ≡ (−9)12 (mod 23) ⇒ x ≡
−108 (mod 23) ⇒ x ≡ 7 (mod 23).

(b) 210x ≡ 40 (mod 212)
Factoring:

105x ≡ 20 (mod 106)
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Using the EEA:

106 = 1× 105 + 1 ⇒ 1 = 106− 1× 105

Therefore −1 is an inverse and x ≡ −20 (mod 106) or x ≡ 86 (mod 106). Converting to our
modulus x ≡ 86 (mod 212) or x ≡ 192 (mod 212).

(c) 33x ≡ 7 (mod 143)
gcd(33, 143) = 11 but 11 ∤ 7 therefore no solutions.

(d) 124x ≡ 132 (mod 900)
The gcd(124, 900) = 4 therefore we can simplify to obtain 31x ≡ 33 (mod 225). The gcd(a,m) = 1
hence we acn find an inverse of 31 (mod 225)

225 = 7× 31 + 8 ⇒ 8 = 225− 7× 31

31 = 3× 8 + 7 ⇒ 7 = 31− 3× 8

8 = 1× 7 + 1 ⇒ 1 = 8− 1× 7

Backsubstituting we find that 1 = 31(−1) + (225 + 31(−7)) × 4 = 4 × 225 − 29 × 31. Therefore
-29 is an inverse of 31 (mod 225).

(−29)31x ≡ (−29)33 (mod 225)

x ≡ −957 (mod 225)

x ≡ 168 (mod 225)

We can obtain other solutions by adding 225: x ≡ 168+ 225 = 393, x ≡ 168+ 2× 225 = 618, x ≡
168 + 3× 225 = 843, all (mod 900).

6. Let R be the relation on the set of all colorings of the 2×2 checkerboard where each of the four squares
is colored either red or blue so that (C1, C2), where C1 and C2 are 2 × 2 checkerboards with each of
their four squares colored blue or red, belongs to R if and only if C2 can be obtained from C1 either
by rotating the checkerboard or by rotating it and then reflecting it.

(a) Show that R is an equivalence relation.
First note that R is reflexive since any coloring can be obtained from itself via rotation by 360
degrees. To see that R is symmetric and transitive, note that each rotation is the composition
of two reflections and conversely the composition of two reflections is a rotation. Therefore
(C1, C2) ∈ R iff C2 can be obtained from C1 by composition of reflections. Hence if (C1, C2) ∈ R
then (C2, C1) ∈ R (the inverse of a composition of reflections is also a composition of reflections)
and R is symmetric. To check whether R is transitive, we note that if (C1, C2) ∈ R and (C2, C3) ∈
R then the composition of reflections in each case produces a composition of reflections so that
(C1, C3) ∈ R.

(b) What are the equivalence classes of R?
Each coloring corresponds to a sequence of length four, with R and B denoting the colors. The
equivalence classes are as follows:

{RRRR} , {BBBB} , {RRRB,RRBR,RBRR,BRRR} , {RBBR,BRRB}

{BBBR,BBRB,BRBB,RBBB} , {RRBB,BRBR,BBRR,RBRB}

7. Prove that if a0 ≡ a (mod n) and b0 ≡ b (mod n) then (a0 (mod n)) · (b0 (mod n)) ≡ (a · b) (mod n).
By the EEA there exist integers qa, qb, ra, rb such that a = qan + ra and b = qbn + rb. Plugging into
the RHS:

(qan+ ra)(qbn+ rb) (mod n) = (qaqbn
2 + qarbn+ qbran+ rarb) (mod n)

All therms are divisible by n except for the remainder rarb, therefore ab mod n = rarb mod n.
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8. Solve the following system of congruences:

(a) Use the Chinese Remainder Theorem to find an x such that:

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

x ≡ 10 (mod 11)

Set N = 5 × 7 × 11 = 385. Then N1 = N/5 = 77, N2 = N/7 = 55, N3 = N/11 = 35. Working
out the multiplicative inverses for each Ni modulo ni. N1 ≡ 77 ≡ 2 (mod 5) ⇒ x1 = 3.

(b) Find all solutions x, if they exist, to the system of equivalences:

2x ≡ 6 (mod 14)

3x ≡ 9 (mod 15)

5x ≡ 20 (mod 60)

Reduce the above:

x ≡ 3 (mod 7)

x ≡ 3 (mod 5)

x ≡ 4 (mod 12)

Set N = 7× 5× 12 = 756. Then N1 = 5× 12 = 60 ≡ 4 (mod 7), N2 = 7× 12 = 84 ≡ 4 (mod 5),
and N3 = 7 × 5 = 35 ≡ 11 (mod 12). Putting terms together we see that x = 2 × 60 × 2 + 4 ×
84× 3 + 11× 35× 4 = 2908. Therefor any solution x ≡ 2908 ≡ 388 (mod 420).

(c) Use the Chinese Remainder Theorem to compute 4651 (mod 55) by hand.

9. 1500 soldiers arrive in training camp. A few soldiers desert the camp. The drill sergeants divide the
remaining soldiers into groups of five and discover that there is one left over. When they divide them
into groups of seven, there are three left over. When they divide them into groups of eleven, there are
again three left over. Determine the number of deserters.
Out of 1500 soldiers, the number x of soldiers that remain satisfies x ≡ 1 (mod 5), x ≡ 3 (mod 7), and
x ≡ 3 (mod 11). We can thus apply the CRT as follows:

i ai ni Ni Ni (mod ni) yi
1 1 5 77 2 3
2 3 7 55 −1 −1
3 3 11 35 2 6

We can obtain an integer satisfying the above by computing:

x =
∑

aiNiyi = 1× 77× 3 + 3× 55×−1 + 3× 35× 6 = 231− 165 + 630 = 696

The set of solutions is the set of integers that differ from 696 by a multiple of N , where N = 5×7×11 =
385. Since only a few soldiers deserted, the number remaining should be the largest integer less than
1500 that is congruent to 696 modulo 385. Since 696 + 2 × 385 = 1466, we conclude that 34 soldiers
deserted.

10. Consider the following questions on closed binary operations:

(a) Let f : Z+ × Z+ → Z+ be the closed binary operation defined by f(a, b) = gcd(a, b). (a) is f
commutative? (b) Is f associative? (c) Does f have an identity element?
Suppose the gcd(a, b) = d. Then d | a and d | b ⇐⇒ d | b and d | a. Therefore gcd(a, b) =
gcd(b, a) = d and f is commutative.
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To show that f is associative we need to prove gcd(a, gcd(b, c)) = gcd(gcd(a, b), c). Note that
d | gcd(a, b) and d | c ⇒ d | gcd(gcd(a, b), c) and d | a and d | b. Therefore d | c, d | a and
d | b ⇒ d | (gcd(a, gcd(b, c)) ∀a, b, c ∈ Z. This implies that gcd(a, gcd(b, c) = gcd(gcd(a, b), c) for
any d | a, d | b, d | c and thus f is associative.
If the identity element exists, then gcd(a, e) = a so a | a and a | e but a ∤ e. Therefore ∄e such
that gcd(a, e) = a.

(b) For distinct primes p, q, let A = {pmqn | 0 ≤ m ≤ 31 , 0 ≤ n ≤ 37}. (a) What is |A|? (b) If
f : A × A → A is the closed binary operation defined by f(a, b) = gcd(a, b), does f have an
identity element?
|A| = 32× 38 = 1216. The identity element for f is p31q37.

11. Apply the Binomial theorem to work out the following:

(a) Expand (a+ b)5 (
5

0

)
a5 +

(
5

1

)
a4b1 +

(
5

2

)
a3b2 +

(
5

3

)
a2b3 +

(
5

4

)
a1b4 +

(
5

5

)
b5

(b) Expand (x+ 2)6(
6

0

)
x6 +

(
6

1

)
x521 +

(
6

2

)
x422 +

(
6

3

)
6323 +

(
6

4

)
x224 +

(
6

5

)
x25 +

(
6

6

)
26

(c) Expand (2x+ 3)4(
4

0

)
(2x)4 +

(
4

1

)
(2x)331 +

(
4

2

)
(2x)232 +

(
4

3

)
(2x)123 +

(
4

4

)
34

(d) Expand (
√
2 + 1)5 + (

√
2− 1)5 and simplify.(

5

0

)√
2
5
+

(
5

1

)√
2
4
+

(
5

2

)√
2
3
+

(
5

3

)√
2
2
+

(
5

4

)√
2
1
+

(
5

5

)
1

+

(
5

0

)√
2
5 −

(
5

1

)√
2
4
+

(
5

2

)√
2
3 −

(
5

3

)√
2
2
+

(
5

4

)√
2
1 −

(
5

5

)
1

= 2(1× 4
√
2 + 10× 2

√
2 + 5×

√
2) = 58

√
2

12. In how many ways can one travel in the xy plane from (0,0) to (3,3) using the moves R : (x, y) →
(x+1, y) and U : (x, y) → (x, y+1), if the path taken may touch but never fall below the line y = x?
In how many ways from (0, 0) to (4, 4)? Generalize the results from (0, 0) to (a, b). What can one say
about the first and last moves of the paths?
The result is an example of Catalan numbers which obey the following combinatorial identity:

For n ≥ 0 , there are Cn =
1

1 + n

(
2× n

n

)
paths from (0, 0) to (n, n)

Plugging in for (0, 0) to (3, 3) and (0, 0) to (4, 4) we have:

C3 =
1

1 + 3

(
2× 3

3

)
= 5 , C4 =

1

1 + 4

(
2× 4

4

)
= 14

For n ≥ 0, since we never fall below the line y = x the first move is U and the last move is R.

13. Let p be prime and let f(x) be a polynomial over Zp (the set of integers mod p) of degree n. Prove
that f(x) has at most n roots.
We can prove this using a result similar to the Fundamental Theorem of Algebra by using induction
on degree.
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Base case: We will examine a polynomial of degree 1 (mod p) of the form ax− b = 0 (mod p). Here
a, b are elements of arithmetic mod p and a ̸= 0. It follows that a has an inverse a−1 (mod p) so the
unique root is x = a−1b. Therefore the result holds for the base case.

Inductive Hypothesis: Assume every polynomial of degree k over Zp has at most k roots.

Inductive Step: Let P be a polynomial of degree k+1. If P does not have a root then the statement
holds trivially. Assume P has a root a so that P (a) = 0. Using the division algorithm we can write
P (x) = (x− a)Q(x) +R where Q(x) is a degree k polynomial, R is a degree 0 polynomial. Since a is
a root ⇒ P (a) = 0 ⇒ R = 0 ⇒ P (x) = (x − a)Q(x). Note that mod p arithmetic has no divisors of
zero since p is prime. Therefore, the only roots of P (mod p) are roots of (x− a) (mod p) and roots
of Q (mod p). Since x− a has one root, and Q has at most k roots (by the inductive hypothesis), it
follows that P has at most k+1 roots.

14. For every positive integer n, show that:(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · ·

This follows from the fact that
(
n
k

)
=

(
n

n−k

)
. To show, expand into factorials and cancel terms.

15. Prove the hexagon property:(
n− 1

k − 1

)(
n

k + 1

)(
n+ 1

k

)
=

(
n− 1

k

)(
n+ 1

k + 1

)(
n

k − 1

)
Expand into factorials. Both products are equal to f(n)/f(n−k)f(k) where f(n) = (n+1)!n!(n−1)!.

16. Prove that Pascal’s triangle has a more surprising hexagon property:

gcd

((
n− 1

k − 1

)
,

(
n

k + 1

)
,

(
n+ 1

k

))
= gcd

((
n− 1

k

)
,

(
n+ 1

k + 1

)
,

(
n

k − 1

))
Let ϵp(a) be the exponent by which the prime p divides a, and let m = n − k. The identity to be
proved reduces to:

min(ϵp(m)− ϵp(m+ k), ϵp(m+ k + 1)− ϵp(k + 1), ϵp(k)− ϵp(m+ 1))

= min(ϵp(k)− ϵp(m+ k), ϵp(m)− ϵp(k + 1), ϵp(m+ k + 1)− ϵp(m+ 1))

Let’s write this compactly as min(x1, y1, z1) = min(x2, y2, z2). Notice that x1 + y1 + z1 = x2 + y2 + z2.
The general relation ϵp(a) < ϵp(b) ⇒ ϵp(a) = ϵp(|a ± b|) allows us to conclude that x1 ̸= x2 ⇒
min(x1, x2) = 0. The same holds for (y1, y2) and (z1, z2). It is now straightforward to complete the
proof.

17. Let p be prime. Show that
(
p
k

)
(mod p) = 0 for 0 < k < p. What does this imply about the binomial

coefficients
(
p−1
k

)
?

Expand the binomial: (
p

i

)
=

p!

i!(p− i)!

Observe that since p is prime, the numerator has a factor of p that cannot be canceled by any term.
We can express this as follows: (

p

i

)
= p× (p− 1)!

i!(p− i)!

By definition this means that p |
(
p
i

)
. Since

(
p
k

)
=

(
p−1
k

)
+
(
p−1
k−1

)
, it follows that

(
p−1
k

)
≡ (−1)k (mod p).
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18. We can define the reciprocal of a factorial as follows:

1

z!
= lim

n→∞

(
n+ z

n

)
n−z

Show that the above definition is consistent with the ordinary definition by showing that the limit of
the above is 1/m! when z = m is a positive integer. Use the above to prove the factorial duplication
formula:

x!

(
x− 1

2

)
! = (2x)!

(
−1

2

)
!/22x

Multiplying and dividing the above gives:

(−1/2)!

x!(x− 1/2)!
= lim

n→∞

(
n+ x

n

)(
n+ x− 1/2

n

)
n−2x

(
n− 1/2

n

)
Applying the duplication formula

(
n−1/2

n

)
=

(
2n
n

)
/22n:

= lim
n→∞

(
2n+ 2x

2n

)
n−2x

Also 1/(2x)! = limn→∞
(
2n+2x
2n

)
(2n)−2x, therefore the equivalent Gamma function is:

Γ(x)Γ(x+ 1/2) = Γ(2x)Γ(1/2)/22x−1

19. Prove that the set S of polynomials of degree k with coefficients in Zp form a group under addition
modulo p.
The definition of addition of polynomials and addition modulo p imply that the sum of two elements
of S is in S. The identity element is the polynomial with coefficients all 0. The inverse of f ∈ S is the
polynomial whose coefficients are the inverses of Zp of the coefficients of f . Associativity of addition
of elements of S follows from associativity of addition modulo p for each coefficient.

20. A cyclic shift of a p-tuple x is a p-tuple obtained by adding a constant (modulo p) to the indices of the
elements of x; shifting x by p + i positions produces the same p-tuple as shifting x by i positions. For
a ∈ N, let R be the relation on [a]p (the set of p-tuples with entries in {1, · · · , a}) defined by putting
(x, y) ∈ R if the p-tuple y can be obtained from x by a cyclic shift.

(a) Prove that R is an equivalence relation on [a]p.
Let R be the relation on [a]p defined by putting (x, y) ∈ R if the p-tuple y arises from x by a
cyclic shift.
Every p-tuple is a cyclic shift of itself, so R is reflexive. The inverse of a cyclic shift is a cyclic
shift, so R is symmetric. The compisition of two cyclic shifts is a cyclic shift, so R is transitive.
Hence R is an equivalence relation.

(b) Prove that p divides ap − a when p is prime. Hint: Partition a set of size ap − a into subsets of
size p.
To obtain a set S of size ap − a, discard from [a]p the a elements that use only one value. Each
forms an equivalence class of size 1 under R. If the remaining equivalence classes partition S into
sets of size p, then p divides [a]p − a.
If x ∈ S, then p cyclic shifts apply to x, so each class has size at most p. By way of contradiction,
suppose that some class has size less than p. In shifting an element by 0, 1, · · · , p − 1 positions
to obtain all members of the class, some member must appear twice. If y appears when we shift
x by i or j, then shifting y by j − i positions does not change it. Let b = j − i; shifting y by
any multiple of b positions also leaves it unchanged. By Fermat’s Little Theorem, 1 is a multiple
of b modulo p. We conclude that shifting y by one position leaves it unchanged. This requires
that each entry in y is the same as the next, but we explicitly omitted such p-tuples from S. The
contradiction implies that R partitions S into equivalence classes of size p.
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